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Options or forwards? It’s all the same in the long run.
Abstract
In this article we simplify the decision of using options or forwards in order to
hedge an unwanted exposure for investors with a long term horizon by showing that a

sequence of option payoffs converge in time to a payoff that can be realised using

forwards. The forwards are not used in a dnamic sense, such as delta hedging, but in a
static buy-and-hold sense. The key result is that although a single option provides an
asymmetric payoff, a sequence of them converges to a symmetric payoff and long run

protection is not therefore provided.

1. Introduction

Suppose we own a security that creates unwanted risk in our portfolio. Currency
exposure in an intetnational portfolio is an example. In order to reduce, or eliminate, that
risk we can hedge it away with derivative instruments. A typical hedging strategy is to
use forward contracts to sell a proportion of the security in the future at a price specified
today. Another popular strategy is to buy a put option to insure against price depreciation
but participate in any appreciation. For details on strategic currency investing, the reader
is referred to Gitlin (1993) and Thomas (1990) and references therein.

Investors who are requited to manage this unwanted risk are faced with the
decision of which strategy to employ. Hedge with forwards or options. We focus on an
investor who has a long run horizon, an institutional pension plan sponsor for example.

Such an investor must decide whether to use forwards to hedge a certain proportion of the



security and maintain that hedge throughout the life of the portfolio by rolling the
forward contracts, or pay the premia for a sequence of protective put options.

In this article we simplify the option versus forward decision by showing that in
the long run the put protection strategy yields an identical return distribution to the
forward hedging strategy. We will show that the proportion of forward hedging required
to match the put protection depends on the strike of the option and is approximately equal
to the initial delta of the put protected portfolio. This result has a nice infuitive
interpretation in that a deep out-of-the-money put strategy equates to an unhedged
portfolio; a deep in-the-money put strategy equates to a fully hedged portfolio, and an at-
the-money put strategy equates to a half hedged portfolio. More generally we have a
useful duality in that if we know what proportion of hedging is desired, we can derive the
strike price of the option needed to produce it. Conversely, if we know the strike price of
the put option strategy, we can derive the appropriate hedging proportion to produce an
equivalent return distribution.

We know that by dynamically changing the proportion of the forward hedging we
can mimic the long-run put protected strategy returns (in fact this is a well-used technique
in currency management). It is perhaps more surprising to find that a static hedge
proportion of forward hedging can also mimic the long-run return distribution of put
protection.

In Section 2 we provide an application of our result. In Section 3 we give an
empirical example. In Section 4 we support our theory with a simulation. In Section 5 we
give the mathematical proof of our theory. In Section 6 we discuss a possible arbitrage

between options and forwards. In Section 7 we provide a conclusion of our findings.




2. An application of our result: The strategic hedging policy

The construction of a portfolio to maximise long term objectives is known as
strategic asset allocation, The standard approach to making the strategic decision is to use
mean/variance optimisation (Markowitz 1952), where required inputs are the long term
expected returns, volatilities, and correlations of the assets. Given these inputs, the
mean/variance optimisation computes the vector of portfolio weights that maximise the
portfolio expected return for a specified level of portfolio risk. The maximisation can
incorporate any investment constraints.

Mean/variance optimisation is very simple to implement, but statistical decision
theory tells us that the formal solution to strategic asset allocation is to maximise the
investor’s expected utility of wealth (von Neuman and Morgenstern 1947). It has been
shown that the two approaches are identical when the asset returns are normally
distributed (Tobin 1958 and Feldstein 1969).

However, option returns are very asymmetric and therefore not normally
distributed. For this reason options have not been incorporated into a typical strategic
study. But in this article we show that in the long run they are indeed normal and can
therefore be included in the mean/variance optimisation.

If there are international assets in the portfolio, then the strategic allocation will
involve a currency decision. It is not uncommon to address the strategic currency
decision in a separate study. Long run currency returns appear to be normally distributed
(Lee Overlay Partners 2000) so the using mean/variance optimisation is valid for strategic

hedging analyses (even if the short-term currency returns are not normally distributed).



Strategic studies reflect a neutral expected return outlook, and in the case of

currencies the neutral outlook is that the currency will follow uncovered interest rate
parity (see Krugman and Obstfeld 1991 for details). With such an outlook the option

protected strategy is identical to a partially hedged portfolio (see Section 5 for a proof).

The implication is that the strategic study becomes a two-stage process.
Stage 1:

Do a standard mean/variance study to derive the optimal amount of currency
exposure to be left in the portfolio, denoted by a.

Stage 2:

Decide whether the hedging is to be done with options and forwards, or a mixture
of them both. If options are chosen then the appropriate option delta can be deduced via
the equation

o~ VAAHA)
where A is the delta of the protected portfolio.

We have plotted the relationship between hedge ratio and delta in Chart 1 where
the currency volatility is set at 10%. We can clearly observe the intuitive results that deep
out-of-the money put protection is equivalent to an unhedged portfolio, deep in-the-
money put protection is equivalent to a fully hedged portfolio, and at-the-money put
protection is similar to a half hedged portfolio.

From Chartl we can see that given a delta we can derive the hedge ratio that
yields an identical long run retum distribution, and conversely given a hedge ratio we can

derive the corresponding delta. Also in Chart 1 we can see the accuracy of our



approximation o =~ V4(A+A") as both the approximated curve and the true curve are

plotted and seen to be almost indistinguishable.

3. An example using empirical data

We examine a portfolio of currencies (30% JPY, 40% EUR, 30% GBP) and
compute the average return and the risk of that portfolio for a variety of hedge ratios from
fully hedged to unhedged. These portfolios appear as a sequence of points on the
return/risk plot in Chart 2.

We also use historical implied volatility data to derive the returns of an option
protected portfolio. We use options with a variety of deltas from 0 to 1. These portfolios
also appear as a sequence of points on the return/risk plot on Chart 2.

The important conclusion is that there is no significant difference between the
long run return profiles of the forwards or the options. Therefore the long run investor
should be indifferent to the use of either instrument (although the higher transactions

costs of the option strategies may make the forwards a more attractive alternative).

4. Tlustration by simulation

Given the complex nature of the mathematics underlying our analysis, the easiest
way to illustrate the convergence property of the options and forwards is by simulation.
As an example we simulate a currency price process with a zero risk free rate differential,
10% implied volatility, and instantaneous mean equal to the risk free differential. We use
at-the-money options struck annually.

After one year, the downside protection from the put option produces an

asymmetric distribution and is therefore quite distinct from a static proportional forward




hedging strategy. We simulated 10,000 one-year returns from the option strategy and
plotted them in the first of three histograms in Chart 3. The asymmetry of the option
strategy can be seen, particularly when measured against the distribution of returns from
the forwards strategy with a 40% hedge ratio, represented in Chart 3 by the superimposed
solid line.

After several years, the put protection downside limit becomes more negative as
the single year downside limits are compounded. For example after five years the
distribution is much more similar to a static hedging strategy as the histogram of 10,000
simulated five-year returns in Chart 3 illustrates. By the time ten years have passed there
is little difference between the forward hedging and the put protection. The third
histogram in Chart 3 illustrates how close the strategies have become in a simulation of

10,000 ten-year returns.

5. A mathematical approach
5.1 Introduction

The simulation approach provides a great deal of insight into the nature of our
discussion. Even in the isolated example cited above, the convergence of the option based
returns to the forwards based returns is clearly exhibited. However, in order to firmly
claim that the two approaches are equivalent, it is incumbent upon us to provide a
mathematical proof of this proposition.

In our mathematical approach we will prove that the longrun retum distribution
of the option strategy is equal to the longrun return distribution of the forwards strategy

for a specified hedging proportion. To do this we will show that the distributions are



identical in class then demonstrate that the mean and variances of the two strategies are

identical.

5.2 Defining the portfolios
We analyse three portfolios. The first portfolio is simply the risky asset. The
second represents the forwards based strategy. The third represents the option protected

strategy.

Portfolio 1:

Portfolio 1 holds the risky asset. We denote the price of the risky asset, and hence
first portfolio, at time ¢ by Z;.
Portfolio 2:

Portfolio 2 holds the risky asset and forward contracts to hedge a proportion of the
asset. We denote the price of the second portfolio at time ¢ by X;, and note that

X/ Xe=(-a)for1! Zei o 2] Zng

where f;;.; denotes the forward rate at time ¢ maturing at time #+/, and (1 — a) is the
proportion of the portfolio that has been hedged.
Portfolio 3:

Portfolio 3 holds the risky asset and a put option. We denote the price of the third

portfolio at time ¢ by Y7, and note that



Y/ Yy =max(Z/ Z.1, K1 ! Ze))+ pri€ 1 Zp
where p.; and K;.; denote the option price and the strike price respectively, both at time #-
1, and r denotes the risk free rate. The variable K, ; is derived from the initial delta of the

put option. The initial delta will be the same for each of the options.

5.3 The portfolio returns

We are interested in the long run return distributions of these portfolios, and
hence focus on the distributions of

(Zr | Zo), In(Xr/ Xo), and In(¥7 / Yo)

as T'tends to infinity.

We can consider these long run returns as the summations of many short run
returns, This is expressed mathematically by the relationship

n(S7/ So) = 23=1, In(S;/ Sr.1)

that holds for any price series 5.

The benefit of this relationship is that we already have expressions for Xi/ X1,

and ¥; / ¥;.; that we derived in Section 5.2.

5.4 Asset return characteristics
We begin with the security price process, denoted by Z, which we assume follows
geometric Brownian motion hence |
dZ= pZdt+ cZdw
where dW is Brownian motion, This is the standard price process assumption for option

pricing (see for example Hull 1993). Applying Ito’s Lemma to this process we have that



InZ: / 1) ~N( p~ 0" .0").
There are several characteristics of In(Z / Z-1) that will be useful subsequently.
We observe that both the expected return and the variance are finite. We assume that p
and o are not a function of time so that for all ¢ the log returns, In(Z / Z.1), are identically
distributed. The final characteristic of relevance to us is that the geometric Brownian
motion process yields log returns that are mutually independent.
Incidentally, it is easy to show that Z; / Z.; are log normally distributed with mean
e" and variance e**(exp{c®}-1) (see Hull 1993). The variables Z; / Z.; are therefore also

independent and identically distributed.

5.5 The distribution of the long run portfolio returns

The long run return of all three portfolios is normally distributed, and the
annualised expected return and risk of each portfolio are equal to the single-period
expected return and risk. See Appendix A.1 for the proof of this statement.

This is a crucial result. It suggests that all three portfolios converge to a
symmetric return distribution in the long run, even the option based portfolio. Therefore
rolling short-term options does not provide downside protection in the long run, unless a

single option of long run maturity is used.

5.6 An approximation to the log returns
At this point we should analyse the mean and variances of In(Z/Z.1), In(Xi/X.1),
and In(¥/Y,.;) in order to complete our study. However, these distributions are difficult to

work with, and it is in fact a good deal easier to implement the approximation



In(1+2z)~z. In our analysis z will take relatively small values, which is when this
approximation is most accurate. We acknowledge the fact that our results are now subject

to this approximation, but the analytical benefits are large.

5.7 The portfolio expected returns and volatilities

In this section we will derive the expected returns and volatilities of the three
portfolios. To be more precise we will derive the expected excess return, which is defined
as the expected return in excess of the risk free rate. As a notational point, we denote the
expected excess return of price process S as pis and define it as

us = E[S/S.1 — 11— (1)

where E[ ] denotes the ordinary expectation. We also let og denote the volatility of S and
it is therefore defined as

os=V[S/S.; - 11"

Portfolio 1:

As shown in Section 54, directly from log normal distribution theory we have
that

E[Z/Z.1]=¢" and V[Z/Z.;] = (exp{c’}-1).

We thus have immediately that pz =¢* - & and 67 = e*(exp{c’}-1)"
Portfolio 2:

Recalling the equation relating X to Z given in the proof of Section 5.5, we can
readily derive the mean and variance of X/X;.; from the equation

X/ Xg=(1-0)e +az/Z

10



where 7 is the risk free rate.
From this we have that
ELX,/ X.1]=(1 -) € + o E[Z/ Z.;] and VX, / X o VIZ/ Z2.1].
With some algebraic rearrangement we can show that |
Wy =0 pzand oy = o Oz
In conclusion we observe the ratios of the expected excess returns and volatilities of
portfolios one and two, and note that
W /pz =ox/oz =a.

Portfolio 3:

We begin by relating Y to Z using the equation given in the proof of Section 5.5,
and thus have that

Yi/ Yoo =max( % / Zy, Kiy | Zi1) + pri €1 Ziy.

where p,.; denotes the price of the put option at time /.

Given that the option is priced as the present value of the expected future value of
the option using a growth rate equal to the risk free rate, we can derive E[Y; / Y1 -1]
using exactly the same mathematics.

In Appendix A.2(i) we show that

E[Y:/ Yei -1]1=e"®@1) + (Ke.; / Z-1)D(-82) — ('@ (di)+ (K1 / Zi.1)D(-dp) — €)1

where

di = (I0(Ze-1 / Ket) + 1+ Yio?)o and & = (n(Zi-1/ Ker) + 7 - YaoP)/o,
and

81 = (n(Ze1 / Kup) + p+ Vior)o and 8 = (In(Zey / Keg) + p - Vio?)/o,

11



The variance of portfolio 3 can be derived in a similar fashion. In Appendix
A.2(ii) we show that
V[¥{Y,.; — 1] = #exp{cZ ®(80) + (Kr-1/Z4.12D(-82) — (€D (1) + (K- 1/Z1-1)D(-52))-
where 8 = (In(Z.1 / K;.;) + p+ do?)/o.
Using these expressions, we have that
my/h = DB1)~ (KetlZ4 )@ (E)- D)) (e +e'(DB1)-D(d))e )
and

ovloz=[exp{c? ) Eo)H(Kie1/Z1.1 Y D (-82)He DG 1 YHK:- 112, ))D(-82)) et exp{c™}- 1)

5.9 Approximations in a risk neutral environment

The above expressions are clearly difficult to interpret. However, in a risk neutral
framework (ie when pu= r) we can make good approximations to oy/cz. In Appendix
A3 we show that ov/oz = Y(A+A”) and it is easy to show that px = py = pz = 0.
Therefore, the option behaves just like a partially hedged portfolio, and in fact they are

related by o = V(A+A™),

6. A question of arbitrage

When the environment is not risk neutral (so that p > #) it appears that while the
risk of the option protected portfolio is related to the risk of the portfolio hedged with
forwards by the equation o = Vo(A+A”) with A calculated using p instead of r, the

expected returns are not. The expected excess return of the options is less than the
forwards. Both portfolios have the same risk but one has a greater return suggesting an

arbitrage opportunity. For example, when p is one and a half standard deviations away

12



from #, where the volatility is 10% and 7 is zero, the volatility of an at-the-money put
protected portfolio is equal to the volatility of a 40% hedged portfolio. Yet the expected
return of the put protected portfolio is 4.1% whereas the expected return of the hedged
portfolio is 9.7%.

The inefficiency of the option protected portfolio is seen in Chart 4 where a lower
expected return than the forward hedged portfolio is evident. The loss of return appears
greatest at the most asymmetric part of the curve. It may be that while the long run option
protected portfolio return is normally distributed, there is an expected return cost for

having the shorter term protection. Further work is needed in this area.

7. Conclusion

We have shown that the rolling of option strategies converges in the long run to a
symmetric payoff that can be matched by hedging using forwards. We have seen that the
relationship between the hedge ratio, 4, and the portfolio delta, A, is 1-/ = VAATA®).

In a risk neutral environment this result greatly simplifies the decision on how to
include options in a strategic study, as it means we can derive the appropriate hedge ratio
and then choose whether to use forwards or options, being aware that they produce
identical return distributions.

If the expected return of the asset is considerably greater than the risk free rate
then the long run return of the option protected portfolio will be identical in distribution

to the portfolio hedged with forwards but with a reduced expected return.
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Appendix

A.1 The proof that all three long run portfolio returns are normally distributed

The long run returns of all three portfolios are normally distributed, and the
annualised expected return and risk of each portfolio are equal to the single-period
expected return and risk.
Proof

The proof is based around the Central Limit Theorem that says that for a sequence
of independently identically distributed random variables with finite mean and variance,
the sum of these random variables tends to a normal distribution with mean and variance
equal to the sum of the individual means and variances. (See Lindgren 1976 for details)
The Central Limit Theorem will hold for all of our three portfolios provided In(Z; / Z.;),
(X, / X.;), n(¥%;, / Y.;) are each sequences of independent and identically distributed
random variables, and provided that their means and variances are finite. We proceed by
showing that these criteria are satisfied for all three portfolios.
Portfolio 1:

Portfolio 1 consists solely of the risky asset, and so by definition satisfies the
above criteria.
Portfolio 2:

To analyse portfolio 2 we recall from Section 5.2 that the portfolio price process
is given as

Xi! Xe1=(- Q) for-1 [ Ze1+ o Zt] Zi1.

14



It is useful to note that f;.; = Z.; € (see Hull 1993) where r is the risk free rate, or in the
case of currencies r is the differential of the domestic and foreign risk free rates. We have
taken » to be constant, and can then write

X /X =(-a)e +oZ/Z.;.

First, we show that In(X; / X.;) are independent and identically distributed. Given
that Z; / Z.; are independently and identically distributed, and that o and » are constants,
we immediately have that X; / X.; are independent and identically distributed. It follows
immediately that the same must then also be true for In(X; / X ;).

Now we show that E[In(X; / X.;)] and V[In(X; / X..;)] are both finite. Given that
In(x) < x-1 (see Abramowitz and Stegun 1972) we have upper bounds for Efln(X;/ X./)]
and E[In(X; / X,.;)*] which are E[In(X; / X./)]<B[X; / X.; - 1] and E[ln(X; / X. IPI<E[X: /
X..; — D?]. Therefore, to conclude that the mean and variance of In(X; / X.;) must both be
finite, we are required to prove that ELY, / X.; - 1] and E[(X;/ X.; — 1)*] are finite. We
know from Section 5.4 that E[Z / Z.i] and V[Z / Z.1] are finite, and since X;/ X1 is a
linear combination of Z / Z.; and a constant, E[X;/ X;.;] and V[X;/ X./] are also finite,
and so it follows that E[X; / X,y - 1] and E[(X;/ X;.; — 1)?] must also be finite.

Portfolio 3:

Recalling once again from Section 5.2, the third portfolio price process is given

by
Yo/ Y1 =max( %/ Ziy, Key | Zea) + 1 €'/ Ziey.
We start by showing that In(Y; / Yi.1) are independent and identically distributed.

To do this we must show that K.; / Z.; and p., €' / Z.; are constant through time. The

15



variable K;.; is derived from the initial delta of the portfolio, which is constant for each
option. The delta of the portfolio, denoted by A, is equal to one plus the delta of the put,
and thus

A= O (Z.. /K1) + 1+ VH)/o]
where @[ ] denotes the standardised normal cumulative probability distribution function.
Given the A, rand o are all constant, Z;.;/K;.; is also constant.

Additionally, through the Black Sholes pricing formula (see Hull 1993), we have

that

Pt/ Z1 = Ko tlZp.) ® I(Ze1/Kit) + 7 - Yo?) o] - € @ -(0(Zp.1/Kee1) + 7+ Vo7 Vo).
Now, we have already shown that Z.;/K,.; is constant, and so we can immediately see that
p-1€’ / Zw; is also a constant. These are important characteristics because it means that the
Y: / Yii are identically distributed, and since they only involve the corresponding
contemporaneous value of Z; / Z.i, they are also mutually indeperdent. It follows
immediately that In(Z, / Z.,) are independent and identically distributed.

We continue by showing that E[In(Y: / Yi.1)Jand V[In(Y; / Yi.1)] are finite. As in
the second portfolio example, we proceed by showing that E[Y; / Yy - 1] and V[Y: / Yt
- 1] are finite then use the fact that In(x) < x-1 to immediately give us that E[In(Y; / Y.
DJand V[In(Y; / Yi.1)] are finite. Clearly constants have finite mean and variance
therefore if max( % / Z., Ki.1 / Z.1) has a finite mean and variance then so does Y; / Yi.1.
The variable Z always positive for all ¢, therefore max( % / Zt-1, Kt-1 / Zt-1) < 4 | Zia + K-
{ / Ze.1, and so E[max( Z / Z.1, Kot / Z)) <E[Zs | Ziy + Kot / ZiaJand E[max( 4 / Z.1,
Kei / Z1)’]1 <E[(Z | Ziq + Koy / Z-1)*]. Following the upper bound login used previously,

all that remains for us to do is to show that these two upper bounds are finite. We can see
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that provided that 0<A<I, then K.; must assume a finite value. We know that E[Z; / Z.]
is finite from Section 54 and since we have just shown that K.; is finite we must have
that B[Z / Z.1 + Ki.1 / Z.1] is finite. An identical argument also holds for E[(Z; / Z;.; + K1

! Zi1)*].

A.2 Deriving the mean and variance of the option protected portfolio
In order to clarify the algebra, all variables valued at time 7~/ appear without the

time index (i.e. Z.; appears as Z).

A.2(i) Deriving the mean
To derive an expression for E[¥/Y — 1] we must first derive an expression for
E[max(Z,K))/Z and approach this by stating that

Elmax(Z K/ Z=1; + 1,

where
I = 0} X exp{—Y(n x—6)*/c*}dx and I, = K/jz K/z exp{-Y4(In x —6)*/c*}dx.
xizN2mox = N2mox

where 0 = pu+ Vo2

Addressing I;, by letting z= (In x — 6)/c we have that

“ 1
I = exp{ —¥4(z— o) }dzexp{0 + %0}
(I / z'[-e) 1o N2

= exp{0 + %0} [

1
(InK / Z)-6-6%) /o V21

exp{ — Y4z’ }dz

—ef(1- ©(=5))  where§, = (In(Z/K)+ i +%0%)/c

17




=e"®(4)).

Addressing I, by letting z= (In x — 8)/c we have that

(n(K 12)-8) /o
K/Z
I, = _I Ton exp{— Y2z’ }dz

=(K/Z)D(-8,)  whered, =(In(Z/K)+u~"%c>) 6c=58-0.
Substituting the solutions for 7; and I, into the expectation expression we have that
E[max(Z,K)1/Z = *®(81) + KIZ)D(-82).
Directly from option pricing theory, following similar algebra to the above, we have that
ep/Z=e®(d)) + (KIZ)D(-dz) - €'
where d = (n(Z/K) + r + Yor)lo and d; = (In(Z/K) + r - Vi)Yo, Putting all this together
we have that

E[Y/Y— 1]="®(51) + (KIHD(2) ~ (" D(dy) + (KIZ)D(<da) —€')-1.

A.2(ii) Deriving the variance
To derive an expression for V[¥/Y-1] we note that V[¥i/Y — 1] = V[max(Z,K)/Z], and so
we must first derive an expression for E[max(Z2,K*))/Z*. We approach this by stating that

Elmax(Z,K))Z = I;+ I,

where
0 2 K/Z 2
X 2 2 (K/Z) 2 2
I = exp{—Y(nx—-06)/c"}dxand], = exp{—Y%(n x-0) /o }dx.
3 KJZ\/Z_TLTO')C p 2 4 _;[ '\/EEO'X p{ 2(11’1 ) }

Addressing I, by letting z= (In x — 6)/c we have that

13 — I __l_exp{—l/z(Z—ZO')z}dZGXp{ze +20'2}

(0K 17)-8)/0 V2T

18



o0

J~ 1
(& 2)-8-20) /0 N 278

= exp{20 + 20} exp{ — %z’ }dz

= (") (1-D(-5,))  where, = (n(Z/K)+p+ep’)/o =8 +0
= (e" )¢ D(5,).
Addressing Iy, by letting z= (In x — 6)/c we have that

(n(K / 2)-0)/ &

(K1ZY

I, = :[ Ton exp{-Yz’}dz

=(K/Z)*®(-6,).
Substituting the solutions for I3 and ; into the expectation expression we have that
Efmax(Z> K*)VZ = (@) exp{c’}®Go) + (K12 D(52).
Combining this with our expression for FE[max(Z,K)J/Z and using the fact that
Vimax(Z,K)] = Blmax(Z2 K2))/Z - (E[max(Z,K)}/2)* we have that
VIE/Y 1] = (" exp{c’}Go) + (KD D(32) — (" B(81) + (KIZHD())"

A.3 Approximating the volatility of the option protected portfolio
The volatility of the option protected portfolio expressed as a proportion of the

volatility of the underlying asset portfolio is approximately Y2(A + A%).

Proof

The ratio of volatilities can be expressed as a function of A, the delta of the
protected portfolio. To prove that 2(A + A”) is an approximation of the ratio we show
that it is the second order Taylor expansion (see Abramowitz and Stegun 1970) in terms

of A” taken around A=%. Letting f= oy/oz we note that this expansion gives us that

19



(A) = R(A0") + P(8o XA -0") + Vi (B XA 1)’
= [ (A0 - P(A0™)A0” + %P (Ac™)A0 T+ [ £(807) — £(A0")A0™ 1A% + 14" (A ™A,
We shall take Ag = Y2, and thus can express
A% = [ (57 — WP (AP + VAP (A7) 1+ [ D47 — WA (7 T A% + VP (4 A

All that remains is to derive (%), £(4"), and £(14%).

Before proceeding we make some notational comments. Recall that f= oy/cz and
ov? = V[Y/Ye.1-1] = V[max(K:-1,2)/Zt1 — €"pt-1/Z-1] = V[max(Ke 1/Zi-1, Zt IZ-1)]-
So we can write that
oy’ =B - E/*

where By = E[max(K;.1/Z.1, Z /Z:.1)] and By = E[max(K:1/Z;. 1, Z 1Z:-1)°]

We shall also express 8¢ and & as functions of &y, so that our equations will only involve

81, which we shall abbreviate to 5.

Deriving f(%47:
First we note from Appendix A.2 that
E; = exp{u}[®@) + exp{¥ss”-08} (1-0(E-0))]
and
E, = exp{2p+c?} [@(8+0) + exp{-265} (1-D(3-0))].
When A = %, and thus when 8 = 0 we have that
E1 =exp{u}[ + exp{Vio” }®(0)] and B, = exp{2t+6” 20(o),

additionalty

20



Ei® = exp{2u}[V4 + exp{c’}0(0) + exp{¥:0”} (9]
We can combine these terms to give us that
oy” = exp{21}Q
where Q = exp{c? }(c)(2-D(0)) — exp{¥c*} D(G) - Y.
We can rewrite this as
oy’ = 07" Qllexp{c’}-1)
and so
f4*) = [Qexp{c’}-DI*.
We can see that this f(%4®) is a function solely of o, and now examine it over a typical
range of o. When o=0, f{} ¥=0.58 and when 5=30%, f(15”=0.63. It appears monotonic
over this range. In conclusion we note that this expression is almost constant and make
the approximation that f(/4*) ~ 0.6, which we shall express algebraically as [V(1+3)F.
Substituting this into our original expression, we have that
147 ~ Vi(1+®).
Deriving f(/4"):
To begin we have that
£(A%) = (doydA")oy
which can be written in chain rule form as

doy/dA” = doy/doy? x doy?/ds x dS/dA x dNdA”.

Trivially we have that doyldoy? = 20y, dAVAA” = 2A% and also that A = ®(5) so that
dAMdS = () exp{-¥48’}. Using our previous notation, we have that oy =B - E? s0

that d 6v*/d8 = dB,/dS — 2E,dE, /d5
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All this gives us that
doy/dA” = A%oy (2m)" exp{¥48” }(dE2/dS — 2E1dE1 /).
The last two derivatives are written as
dE,/dd = -exp{+¥s0’-63 }od(c-5)
and
dB,/ds = 2exp{2u+07-268 Yo B(G-3).
When A=Y, and thus when 8=0 we have that
dE/d8 = -exp{pt¥40® }o®(c) and dE»/dd = 2exp{2u+c’}o® (o)
which gives us that
doy?/dd = 2exp{2pto? 1o (o)[ Yeexp{-Yio® }+D(c)-1]
and so
doy/dA” = 21" exp{2ptc? o (o) Yaexp{-Yas™ }+@(c)-1)/ oy.
Now, by noting that o2 = e*#(exp{c?}-1), and from our previous calculation that
Oy07=07> [Q/ (exp{cz}-l)]'/z, we can write
P4 = 2n" exp{c® } oD (0)] Veexp{-Yio? }+®(c)-1]/ [Q (exp{c’}-1)]"
As before we note that f (% %) is a function only of o and observe it over a typical range
of 6. When 6=0, P(%*)=121 and when o=30%, £(%"%)=1.05. Tt appears monotonic over
this range. Again we note that this expression is very close to being constant, and make
the approximation that £(%")~1.207 which we shall express algebraically as Vit
Deriving £(47):
We shall let H denote doy/dA” and, from our previous section, we have that

H=dov?/ds oy’ (2n) %exp{Vd2}D(8)"
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Using the chain rule again, we can write
dH/dA” = dH/dS x d8/dA x dA/dA”
= dH/dS (2r) exp {452 2D (5)".
We must address dH/d5, and have that
dH/dS = 2m) exp{ V521 D(8) oy [Eoy?/dd? - Va(doy?/dd) /oy’]
+ doy?/d5 [(2m) exp {52} D(B)”S + VD(8) /oy,
which gives us that
dH/AA” = 4 exp {82} D(5)/oy[doy?/dd? - Va(dov*/dd) /ov’]
+ (2m)exp {81 doy/dS [2(2m) fexp {87} D(8)5+1)/oy.

When A=Y, and thus when =0 we have that

dH/AA" = 2n/oy[d oy /dd? - Vdoy ids) lsy*] + 2m) *(doy*/d8) oy
which, by noting that syoz=c7* [Q/ (exp{c?*}-1)]"% gives us that

£(5) = [2n(Poy/ds? - Va(doy*/dd)Hoy?) + (2m) doy?/ddY (o2[Q (exp{c”}-1)].

All that remains is to expand the derivatives of oy2. We begin this by recalling that
oy’ = BB’
where By=e"[® (8 y+exp{V402 e 3D(0-8)] and By=e?exp{c? }[® (o+d)+e 2 °®D(c-3)].
The first derivative is then given by
doy?/dd = dEy/dd — 2E1dE, /d3
where dE;/d8 = -e"exp{Vic? }& Pod(5-8) and dE,/d8 = -2¢*Hexp {6*}e 260 (c-3).
The second derivative is then given by

(1263{2/(152 = EQ/d82 — 2(dE1/d8)2 - 2F; dzEl/d62

23



where
PRI = eexp{ac? e Po[D(0-8)0 + (2m) “exp{-Y4(c-5)*}] and
PE,/d5? = 2eMexp{o?}e 202D (c-8)0 + (2m) exp{-Y2(c-0)* }].
When A=Y%, and thus when 8=0 we can combine the above expressions to show that
dov?/ds =2 Hexp{c? }oD (o) Veexp{-Vio” }+D(c)-1] and
Poy?/ds? = 262 exp{c? }o[2D(0)o + (2n) exp{-V?} - o®(0) — (Veexp{-Y40" }H+D(c)) X
(@(0)o + @n) exp{-ac*})]
We have completed the derivation of £ (), and by substituting =0, (exp{c’}-1) we
have that
P44 = exp{c®}o (dn [20(c)c + () Vexp{40’} - oD(of — (hexp{-c’}+D(0)) X
(@@©)s + @n) exp{-Vio*}) - B(o)s exp(c”}(Vaexp{-io’ HP(0)-1IQ] + (1) ()0
2(Vaexp{-Yac H®(0)- 1)) [Q (exp{o?}-D]*
This is a very messy expression, although we do note that it is a function only of
o. We therefore observe it over a typical range of o. When o=0, f’(VzV’)=1.16 and when
o=30%, P(%*=0.69. It appears monotonic over this range. There is slightly more
variation in £’ as a function of o, but is still fairly close to 1. We make the approximation
that P°(%)~1.

Constructing the Taylor series:

From above, the first term in the Taylor expansion is given as
047 — AP (A7) + Vil () = Va(1+B) — VoVt + Ve =0,
The second term in the Taylor expansion is given as
PA™ = B (A) = Vet - =1,

The third term in the Taylor expansion is given as
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VP47 = Y%,
Thetrefore the full approximation is given as

Vs (A+ A?).
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Chart 1. Caption
There is a one-to-one mapping between the long run return distribution of a
portfolio hedged with forwards, and an option protected portfolio. The relationship is
approximately oo = 1/2(A+Al/2) where o is the amount of exposure after hedging and A is
the initial delta of the option protected portfolio. The solid line is the actual relationship,

the dotted line is the approximation.

Chart 2. Caption
The has been no significant difference between hedging with forwards or options

when viewing empirical results from 1988 to 2000.

Chart 3. Caption

Simulation illustrates how a sequence of option returns converges in time to a
symmetric distribution equivalent to a fixed hedge portfolio. After 10 years there is no
distinguishable difference in return distribution from an at-the-money put protected

portfolio and a 60% hedged portfolio.
Chart 4. Caption

When the mean of the risky asset is considerably different from the risk free rate,

then the option based portfolio underperforms the forward based portfolio.
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